Can Nearest Neighbor Searching Be Simple and Always Fast?

نویسندگان

  • Victor Alvarez
  • David G. Kirkpatrick
  • Raimund Seidel
چکیده

Nearest Neighbor Searching, i.e. determining from a set S of n sites in the plane the one that is closest to a given query point q, is a classical problem in computational geometry. Fast theoretical solutions are known, e.g. point location in the Voronoi Diagram of S, or specialized structures such as so-called Delaunay hierarchies. However, practitioners tend to deem these solutions as too complicated or computationally too costly to be actually useful. Recently in ALENEX 2010 Birn et al. proposed a simple and practical randomized solution. They reported encouraging experimental results and presented a partial performance analysis. They argued that in many cases their method achieves logarithmic expected query time but they also noted that in some cases linear expected query time is incurred. They raised the question whether some variant of their approach can achieve logarithmic expected query time in all cases. The approach of Birn et al. derives its simplicity mostly from the fact that it applies only one simple type of geometric predicate: which one of two sites in S is closer to the query point q. In this paper we show that any method for planar nearest neighbor searching that relies just on this one type of geometric predicate can be forced to make at least n−1 such predicate evaluations during a worst case query.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-zero probability of nearest neighbor searching

Nearest Neighbor (NN) searching is a challenging problem in data management and has been widely studied in data mining, pattern recognition and computational geometry. The goal of NN searching is efficiently reporting the nearest data to a given object as a query. In most of the studies both the data and query are assumed to be precise, however, due to the real applications of NN searching, suc...

متن کامل

A Simple , Thread - Safe , Approximate Nearest Neighbor Algorithm

This thesis describes the implementation of a fast, dynamic, approximate, nearestneighbor search algorithm that works well in fixed dimensions (d ≤ 5), based on sorting points in Morton (or z-) ordering. This algorithm scales well on multi-core/cpu shared memory systems, and can run on multiple processors simultaneously. The implementation is competitive with the best approximate nearest neighb...

متن کامل

The Analysis of a Probabilistic Approach to Nearest Neighbor Searching

Given a set S of n data points in some metric space. Given a query point q in this space, a nearest neighbor query asks for the nearest point of S to q. Throughout we will assume that the space is real d-dimensional space <d, and the metric is Euclidean distance. The goal is to preprocess S into a data structure so that such queries can be answered efficiently. Nearest neighbor searching has ap...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

Nearest-Neighbor Searching and Metric Space Dimensions

Given a set S of points in a metric space with distance function D, the nearest-neighbor searching problem is to build a data structure for S so that for an input query point q, the point s ∈ S that minimizes D(s, q) can be found quickly. We survey approaches to this problem, and its relation to concepts of metric space dimension. Several measures of dimension can be estimated using nearest-nei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011